CONSTRUCTION21,

RIVAS DETACHED PASSIVHAUS

by Elena Castillo Viguri / © 2016-07-01 14:26:22 / Espagne / © 12336 / ES

Building Type : Isolated or semi-detached house
Construction Year : 2014
Delivery year : 2016
Address 1 - street : 28521 RIVAS VACIAMADRID, España
Climate zone : [Csa] Interior Mediterranean - Mild with dry, hot summer.

Net Floor Area : $250 \mathrm{~m}^{2}$ SHON RT
Construction/refurbishment cost : 1300 €
Number of Dwelling : 1 Dwelling
Cost/m2 : $5.2 € / \mathrm{m}^{2}$

Certifications :

Proposed by :

General information

Detached house in private development. It is a mixed construction of in situ concrete / industrial light wooden panel framework.
The house is located in a residential area of low density in Rivas Vaciamadrid, a town southeast of Madrid and is the second home with a Passivahus certificate in this autonomous community.

The climate is mild in winters and hot during summer. There is a very high annual temperature swing, which has been one of the great challenges of this project.
Previous climate studies in the area warned us of summer overheating, which has been a determining factor in the development of the project.
The house has two floors above ground. Downstairs for a more public use and a first floor for private use. And one floor below ground level that has multipurpose

spaces. All within the thermal envelope.

The first floor serves as a superimposed body on the ground that protects it from the sun. The ground floor and first floors are connected by a double-height space located in the heart of the house.

Passive strategies capable of combining a good energy operation with the design assumptions were as follows:

- A disposition that groups together in the north side the service zones with small holes, and locate the main rooms in the south zones.
- Protections by overhangs all the holes facing south / west, dimensioned by their orientation.
- A provision of holes of varying heights and facing in the direction of the prevailing wind component area favoring cross-ventilation for night cooling during the warmer months
- A basement within the thermal envelope that gives thermal inertia to a lightweight construction and to acts thermal regulator
- An envelope ventilated facades and roofs that shades the envelopes
- Light colors predominate in the finished envelope

A big effort has been made to combine the design parameters consistent with the requirements of users and the Passivhaus Standard, which has been one of the biggest lessons learned fr om the project.

See more details about this project

[J http://www.idealista.com/news/inmobiliario/vivienda/2015/07/15/738415-coffee-break-como-se-disena-construye-y-se-vive-en-una-casa-pasiva
[$\sqrt{ }$ http://www.plataforma-pep.org/estandar/ejemplos-ph/19
〔http://www.passivhausprojekte.de/index.php?lang=en\#d_4483

Data reliability

Self-declared

Stakeholders

Stakeholders

Function: Designer
DAVID MARSINYACH ROS
BUILDING DESIGN

Function: Other consultancy agency
ELENA CASTILLO VIGURI
+34 619357015
BIOCLIMATIC DESIGN, CONSTRUCTION SYSTEM AND CERTIFICATION PASSIVHAUS

```
Function: Construction company
JESUÓ SOTO (ALTERTECHNICA)
DESIGN AND IMPLEMENTATION OF FACILITIES
```

Function: Structures calculist
DAVID SERRANO
DESIGN AND CALCULATION OF THE STRUCTURE

Function: Contractor

FRANCISCO PASCUAL
CONSTRUCTOR

Owner approach of sustainability

INDUSTRIALIZED HOUSING WITH LOW ENERGY CONSUMPTION

Architectural description

this project. Previous climate studies in the area warned us of summer overheating, which has been a determining factor in the development of the project. The house has two floors above ground. Downstairs for a more public use and a first floor for private use. And one floor below ground level that has multipurpose spaces. All within the thermal envelope. The first floor serves as a superimposed body on the ground that protects it from the sun. The ground floor and first floors are connected by a double-height space located in the heart of the house. Passive strategies capable of combining a good energy operation with the design assumptions were as follows: - A disposition that groups together in the north side the service zones with small holes, and locate the main rooms in the south zones. - Protections by overhangs all the holes facing south / west, dimensioned by their orientation. - A provision of holes of varying heights and facing in the direction of the prevailing wind component area favoring cross-ventilation for night cooling during the warmer months - A basement within the thermal envelope that gives thermal inertia to a lightweight construction and to acts thermal regulator - An envelope ventilated facades and roofs that shades the envelopes - Light colors predominate in the finished envelope A big effort has been made to combine the design parameters consistent with the requirements of users and the Passivhaus Standard, which has been one of the biggest lessons learned from the project.

Energy

Energy consumption

Primary energy need : $117,00 \mathrm{kWhpe} / \mathrm{m}^{2}$.year
Primary energy need for standard building : 270,00 kWhpe $/ \mathrm{m}^{2}$.year
Calculation method: RT 2012
CEEB : 0.1177
Final Energy : 117,00 kWhfe/m².year
Breakdown for energy consumption :
HEATING DEMAND 14 kWh PE / m2 / year
DEMAND REFRIGERATION 8 kwh PE / m2 / year
ACS, AUXILIARY ELECTRICITY 69 kWh PE / m2 / year
LIGHTING, ELECTRICAL 26 kWh PE / m2 / year

Envelope performance

Envelope U-Value : $0,12 \mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-1}$
More information :
FACADES 0.145
COVERS 0.124
DECK 0.395
WINDOWS 0.96
Indicator: n50
Air Tightness Value : 0,59

Real final energy consumption
Real final energy consumption/m2 : 117,00 kWhfe/m².year
Real final energy consumption/functional unit : $117,00 \mathrm{kWhfe} / \mathrm{m}^{2}$.year
Year of the real energy consumption : 2016

Renewables \& systems

Systems

Heating system :

- No heating system

Hot water system :
。Other hot water system

Cooling system :

- Reversible heat pump

HEAT RECOVERY GREYWATER

Solutions enhancing nature free gains :
NATURAL LIGHTNING, SOLAR GAIN, cross ventilation

Indoor Air quality
PERMANENT RENEWAL OF AIR WITHOUT LOSING POWER. CARBON FILTERS + F7.

Comfort

Health \& comfort : NATURAL LIGHTING IN ALL AREAS. THERMAL UNIFORMITY IN ALL THE ENVELOPE. STABLE COMFORT TEMPERATURE OF 20° IN WINTER, 25° IN SUMMER
 VERANO

Products

Product
MECHANICS heat recovery ventilation
ZEHNDER
34902111309
[J http://www.zehnder.es/
Product category :
SYSTEM heat recovery ventilation
RECUPERATOR yielding 84\%

ZEHNDER ARTIC 550
ZEHNDER
34902111309
[J http://www.zehnder.es/
Product category :
HEAT PUMP
HEAT PUMP COOLING LINE FOR AIR VENT

Inside KALHIDRA
KALHIDRA
info@kalhidra.com
CJ http://www.kalhidra.com/
Product category :

HEAT PUMP
HEAT RECOVERY SYSTEM GREY WATER. HEAT PUMP HIDROTERMIA. COP 6.5

CARPINTERÍA VEKA SOFTLINE 82 MD
INRIALSA
inrialsa@inrialsa.com
[Jhttp://www.inrialsa.com
Product category :
PVC WINDOWS
WINDOW FRAME WITH VALUE U $1 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$ WITH STRIPPERS AND TRIPLE GLASS WITH WARM AND SOLAR CONTROL

Urban environment

LOW DENSITY RESIDENTIAL AREA

Land plot area

Land plot area : 500,00 m²
Built-up area

Built-up area : 311,00 \%
Parking spaces

1 SQUARE IN PLOT

Building Environnemental Quality

Building Environmental Quality

- indoor air quality and health
- acoustics
- comfort (visual, olfactive, thermal)
- water management
- energy efficiency

Contest

Building candidate in the category

Energía y Climas Templados

Green Building Solutions Awards 2016
powered by Construction21.org

Premio de los usuarios

Date Export: 20230730190344

