Vil·la Urània: complex of public facilities

Extension + refurbishment

  • Building Type : Other building
  • Construction Year : 2017
  • Delivery year : 2017
  • Address 1 - street : 08006 BARCELONA, España
  • Climate zone : [Csb] Coastal Mediterranean - Mild with cool, dry summer.

  • Net Floor Area : 2 686 m2
  • Construction/refurbishment cost : 5 291 259 €
  • Cost/m2 : 1969.94 €/m2

Proposed by :

Certifications :

  • Primary energy need :
    34.52 kWhpe/m2.year
    (Calculation method : RD: 47/2007 )
Energy consumption
Economical buildingBuilding
< 50A
A
51 à 90B
B
91 à 150C
C
151 à 230D
D
231 à 330E
E
331 à 450F
F
> 450G
G
Energy-intensive building
Vil·la Urània is a small residence of the late nineteenth century that was home to the renowned astronomer Josep Comas i Solà, in the district of Sarrià-Sant Gervasi in Barcelona. The re-densification of the neighborhood left the building and the small surrounding garden encased between two large dividing walls. The new complex of facilities assumes the challenge of giving a new life to the existing building and gardens by incorporating them into a new building with low environmental impact and reduced energy consumption. The new equipment, with more than 3200m2, stands out for the use of intermediate spaces, naturally heated, closed by a large facade formed by several overlapping filters that adapt to the external conditions, providing a vegetal facade that accompanies the users in all their activities.

See more details about this project

 http://www.sumo-arquitectes.com/catv3/projectes/complex-equipaments-urania/
 http://onsiteurania.tumblr.com/
 http://hicarquitectura.com/2014/01/sumo-arquitectes-yolanda-olmo-1r-premio-concurso-vil%c2%b7la-urania/

Data reliability

3rd part certified

Stakeholders

    Designer

    UTE SUMO arquitectes SLP (jordi pagès, Marc Camallonga, Pasqual Bendicho) + Yolanda Olmo

    Sumo Arquitectes. Barcelona

    First prize in public competition, Project and Management of works


    Construction Manager

    UTE Dragados-Acsa Sorigué


    Structures calculist

    Manuel Arguijo i Asociados


    Construction company

    AIA Instal·lacions arquitectóniques


    Thermal consultancy agency

    Dekra


    Other consultancy agency

    Q estudi. Presupueto y mediciones


    Facility manager

    Viading


    Developer

    BIMSA


    Others

    Aitor Estèvez. Fotografia

Contracting method

General Contractor

Owner approach of sustainability

The promoter of the building is the Barcelona City Council. Bimsa is the municipal company in charge of the management and supervision of the projects. The terms of the tender and the specifications laid down the need to introduce sustainable and energy efficiency parameters, aiming to achieve almost null consumption buildings nZEB.

Architectural description

Vil·la Urània is a small residence of the late nineteenth century that was home to the renowned astronomer Josep Comas i Solà, in the district of Sarrià-Sant Gervasi in Barcelona. The re-densification of the neighborhood left the building and the small surrounding garden encased between two large medianeras. The new complex of equipment assumes the challenge of giving a new life to the existing building and gardens by incorporating it into a new building of low environmental impact and reduced energy consumption. The extension is conceived as a tall and narrow building, oriented to South-east with a large gallery, a semi-detached greenhouse, which passively air-conditions the meeting areas and informal activities as well as the circulation of the building. This intermediate space functions as a winter greenhouse and as a shade in summer, and acts as a thermal mattress by separating the heated areas from the outside, reducing the energy demand of the building. The facade adapts automatically to outdoor conditions. Indoor temperature sensors act on the glass facade, opening it completely when necessary. Outside probes measure solar radiation by acting on the folding shutters in summer. The inner plantation formed by different species provides a pleasant sensation of freshness in summer, while in winter reduces its volume to allow to capture the solar radiation. The building envelope has been designed to achieve low thermal transmittance, minimize thermal bridges and a high level of tightness.

Energy consumption

  • 34,52 kWhpe/m2.year
  • 195,93 kWhpe/m2.year
  • RD: 47/2007

  • 17,67 kWhfe/m2.year
  • Heating: 3,26kWhFE / m2year
    Cooling: 5,29kWhFE / m2year
    ACS: 1.75kWhFE / m2year
    Lighting: 7,37kWhFE / m2year

  • 1,00 kWhpe/m2.year

Envelope performance

  • 0,26 W.m-2.K-1
  • Cover U: 0.23 W / m2K
    U Facade: 0.26-0.31 W / m2K
    Walls buried U: 0.26 W / m2K
    Solera U: 0.44 W / m2K.
    The glazings have been selected depending on their specific location:
    - Glazing between interior and exterior: Ug: 1,3 W / m2K TL: 70% g: 0,41
    - Glazing between interior and exterior space: Ug: 1,5 W / m2K TL: 78% g: 0 , 65
    - Intermediate and Exterior Glazing: Ug: 5.4 W / m2K TL: 80% g: 0.82
    Wood carpentry U: 2W / m2K

  • 0,29
  • HE1 BD

    The control system has been designed with a friendly and intuitive interface. The elements that affect the comfort and usability of the building are also controlled by manual controls. Automated blinds are automatically controlled, but switches in the gap allow them to be operated in separate blocks manually. The manual operation has a predetermined duration (configurable) and then goes back to automatic mode.

Systems

    • Geothermal heat pump
    • Others
    • Heat pump
    • Geothermal heat pump
    • Chilled Beam
    • Natural ventilation
    • Nocturnal ventilation
    • Free-cooling
    • Double flow
    • Solar photovoltaic
    • Heat Pump on geothermal probes
  • 37,54 %
  •  En la aportacion de renovables no se ha contabilizado la fraccin renovable de la Geotermia

    High efficient active systems have been chosen, so the building has a 200kW geothermal heat pump with 11 wells 100m deep (100kW) combined with a 160kW remote evaporator for peak times and for when the outside temperature is more favorable for the exchange. The rooms have inductors (cold cars) and a primary air system provided by high efficiency heat recovery units with frequency inverter and possibility of freecooling, controlled in each room by presence sensors and CO2 to perform the air renovation alone When necessary. The lighting is LED and the building has photovoltaic production with 19kWpic installed.

    In the contribution of renewables (37.54% of PE), the renewable fraction provided by geothermal energy has not been counted (if we include geothermal energy, the percentage is 63%)

    The intermediate space is naturally air-conditioned. The dynamic facade controls its configuration at all times

Smart Building

    The dynamic facade adapts automatically to what happens outside and inside. The large glazed façade opens automatically in 12 independent zones, and each zone is controlled by an interior temperature sensor.

    The building has a complete monitoring system. A custom interface has been designed so that part of the data (electricity consumption, photovoltaic production, temperatures etc.) is available on indoor monitors.

    The building has a control system, whose interface has been carefully designed. Some functions can be controlled manually without having to access the control console, to promote interoperability with users. The manual mode has a preset duration (configurable) and then returns to automatic mode. The opinions of the first users are favorable, once they overcome the fear of a complex system, they find it intuitive and logical.

GHG emissions

  • 3,65 KgCO2/m2/year
  • Method of calculation: energy certification; heating, cooling, ventilation and auxiliary, ACS and lighting

Water management

  • 146,70 m3
  • 57,70 m3
  • For irrigation, a buried deposit of 20,000L has been designed. The irrigation system is by dripping to achieve an efficient use of water. The irrigation of the interior plantation is done with a closed circuit with fertiirrigación adjusting the quantity of water to the time of the year. The deposit also covers the irrigation of the garden of the plot. Whenever possible, autochthonous plants with low water consumption have been selected. The irrigation system was designed to cover 100% of irrigation needs with rainwater.

Indoor Air quality

    During construction, materials and construction systems with very low VOC content have been selected. Priority has been given to natural materials of low elavoration and with little treatment, leaving them exposed. Thus, wood and concrete are the predominant materials in the interior. To achieve the best air quality and at the same time reduce energy consumption, air renovation has been arranged according to the needs of each room. All rooms in the building have presence sensors and CO2 so that mechanical ventilation is activated only when necessary. The intermediate space (20% of the building) is ventilated naturally, with different intensities depending on the time of year. In summer the facade is totally open and the inner courtyard collaborates in generating a good cross ventilation.

Health & Comfort

    In order to favor a healthy work environment, natural low-VOC materials and non-static electricity storage were prioritized. All the rooms of the building have natural light. On the other hand the large areas corresponding to the garden gallery favor the relationship between the occupants, a natural air conditioning and the contact with the outside (the intermediate space helps the users to become aware of the changes of season, and the building is in constant evolution).

    El edificio se ha dividido en tres áreas con diferentes niveles de confort, atendiendo a las actividades que se van a desarrollar; ESPACIO EXTERIOR: Escalera, patio, terrazas etc sin ningún acondicionamiento. ESPACIO INTERIOR: Climatizado. 21ºC-26ºC. ES

Product

    Swegon heat recuperator

    swegon

    Swegon S.A.U C/ Lope de Vega 2, 2ª planta. 28231 Las Rozas, Madrid.

    HLK / Belüftung, Kühlung

    High efficiency heat recovery units

    Silent and compact. Acceptance by all parties has been very good


    Halton Rex chilled beams

    Halton

    C/ Jerez de los Caballeros, 2 (BBC) 28042 Madrid España Tel. +34 913 058 503 Fax + 34 917 467 006

    HLK / Heizung, Warmwasser

    Ceiling induction elements. Active chilled beams that provide heating and cooling by incorporating treated renewal air from the heat registers

    Easy maintenance, no fans or filters. They are "exposed", facilitating access to controls and drives

Construction and exploitation costs

  • 5 691 259

Urban environment

The building is located in a very consolidated area of the city center of Barcelona with different options of public transport. Vil·la Urània was surrounded by large dividing walls of the adjoining buildings. The high and narrow building was designed to avoid the demolition of the preexisting vil·la and with its little occupation to liberate an interior garden.

Land plot area

1 119,00 m2

Built-up area

551,75 %

Green space

567,25

Building Environmental Quality

  • indoor air quality and health
  • consultation - cooperation
  • acoustics
  • comfort (visual, olfactive, thermal)
  • water management
  • energy efficiency
  • renewable energies
  • products and materials

Contest categories

Energía & Climas Temperados

Energía & Climas Temperados

Salud & Comodidad

Salud & Comodidad

Edificio Inteligente

Edificio Inteligente

Premio de los Usuarios

Premio de los Usuarios

Green Solutions Awards 2017 - Edificios


Author of the page

  • jordi pagès serra

    socio fundador


  • Other case studies

    More

    Contest

    Green Solutions Awards 2017 - Edificios