Butterfly House

by PIMPUN JIROJWONG / 2016-06-16 09:25:34 / International / 9341 / EN

New Construction

Primary energy need :
82.5 kWhpe/m².year
(Calculation method : Other)

ENERGY CONSUMPTION

<table>
<thead>
<tr>
<th>Building Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 à 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 à 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151 à 250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251 à 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351 à 450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building Type : Isolated or semi-detached house
Construction Year : 2005
Delivery year : 2006
Address 1 - street : 34190 UBON RATCHATHANI, Thailand
Climate zone : [Aw] Tropical Wet & Dry with dry winter.

Net Floor Area : 120 m² Other
Construction/refurbishment cost : 38 000 €
Cost/m² : 316.67 €/m²

Proposed by :

General informations

This is an energy efficient house that was built by the University of Ubonratchathani in 2005 as part of a research project funded by the Ministry of Energy of Thailand. 2-storey house with 2 bedrooms on the second floor and living space downstairs is made of concrete structure. Upper floor plate is bigger to act as shading for lower one. The distinct feature is a chimney aligned at center of the house to ventilate during the daytime. The roofs are break into 2 pieces and tilted like butterfly wings shape into the chimney to create the pressure different for venturi effect under the roof and gain benefit from night radiation. Moreover, all main functions are categorized as service zone and living zone, oriented and break them by the chimney.

Stakeholders
Contracting method

Public Private Partnership

Energy

Energy consumption

Primary energy need: 82.50 kWhpe/m².year
Primary energy need for standard building: 86.58 kWhpe/m².year
Calculation method: Other
CEEB: 0.0001
Breakdown for energy consumption:
- Lighting: 2%
- Air condition: 86%
- Ceiling fan: 1%
- Equipment: 9%
- Misc: 2%

Envelope performance

Envelope U-Value: 0.43 W.m⁻².K⁻¹
More information:
Typical material for wall is composed of lightweight concrete block with cellulose fiber cement outside and 1" polyurethane foam in between to block external heat gain and moisture. For fenestration area, ocean green float glass is utilized due to the low shading coefficient property (SC=0.59) while the visible ray transmittance is high (VT = 0.72) to maximize the benefit from daylight. Roof has double layers to create venturi effect for attic ventilation.

Real final energy consumption

Final Energy: 75.00 kWhfe/m².year

Renewables & systems

Systems

Heating system:
- No heating system

Hot water system:
- No domestic hot water system

Cooling system:
- Fan coil

Ventilation system:
- Natural ventilation
- Nocturnal ventilation

Renewable systems:
- No renewable energy systems

Other information on HVAC:
High-efficient air-conditioners (EER > 12)
Urban environment

Located on a large open space area with prevailing wind most from the south

Land plot area: 224,00 m²
Built-up area: 40,00 %
Green space: 80,00%

Products

Product

Chimney

Africvs Co.,Ltd. | Chimney is a part of architectural design.
info@africvs.com
http://africvs.com/

Product category: Structural work / Passive system
Vertical cavity for ventilation, most effectively in the daytime
Temperature inside the house is reduced.

Costs

Construction and exploitation costs

Cost of studies: 3 850 €
Total cost of the building: 38 500 €

Contest

Reasons for participating in the competition(s)

The house is a product stemmed from a housing design competition that had a condition to build a real house in order to collect data on thermal comfort. Passive design using radiation cooling, natural ventilation, solar shading, and roof insulation was used effectively.

Building candidate in the category

Energy & Hot Climates

Green Building Solutions Awards 2016
powered by Construction21.org