The challenge was to create a simple, sustainable, two-storey unit that would fit into a special site: a mature forest inside a northern Romanian city. House Che subtly rises around the inner courtyard in a mesmerizing natural environment with whom the building communicates through wide openings and various inner-out passages.

The house was designed and built to reach the passive house standard in the harsh climate conditions of northern Romania (Suceava) and is in the passive evaluation process. The estimated energy demanded for heating and hot water is lower than 14kWh/m²/year (according to preliminary PHPP calculations).

The natural day factor is four times bigger than the usual amount while the generous glazed surfaces also increase the solar passive energy gain. The iconic shape of the roof maximizes the solar input used for heating, offering in the meanwhile a contemporary dynamic expression.

To match the surroundings, exterior finishing is made out of natural cedar slats that preserve their physical-chemical properties even in the northern climate. The green roof recovers the vegetal surface displaced for the house construction.
The minimal need for heating is covered by a ground/water power heat pump. Photovoltaic panels will be installed on the roof at a later stage in order to provide the electric energy necessary for vital consumption and domestic hot water is obtained through solar thermal collectors and a heat buffer tank.

See more details about this project

- http://www.home-review.com/2015/05/the-wild-child/
- http://www.trendir.com/house-design/energy-efficient-forest-home-has-suspended-net-lounge.html

Stakeholders

- **Function**: Designer
- **TECTO Arhitectura**
- office@tecto.ro
- http://tecto.ro/

Contracting method

- Other methods

Energy

Energy consumption

- **Primary energy need**: 89.00 kWhpe/m².year
- **Primary energy need for standard building**: 111.00 kWhpe/m².year
- **Calculation method**: Other
- **CEEB**: 0.0001

Envelope performance

- **Envelope U-Value**: 0.11 W.m⁻².K⁻¹
- **More information**:
 - Exterior insulation to ambient air: 0.11W/(m²K)
 - Exterior insulation underground: 0.12W/(m²K)
 - Windows: 0.63W/(m²K)
 - External doors: 0.10W/(m²K)
- **Building Compactness Coefficient**: 0.32
- **Indicator**: n50
- **Air Tightness Value**: 0.40

Renewables & systems

Systems

- **Heating system**:
 - Condensing gas boiler
 - Low temperature floor heating

- **Hot water system**:
 - Condensing gas boiler

- **Cooling system**:
 - No cooling system
Ventilation system:
- Natural ventilation
- Double flow heat exchanger

Renewable systems:
- Heat pump

Environment

Urban environment

The construction fits into a special site: a mature forest inside a northern Romanian city. The building keeps all the existing trees on site and also recovers the existing lawn in the shape of the green roof.

Land plot area: 1285.00 m²
Built-up area: 15.00 %
Green space: 1000.00

Products

Product

Proclima Membranes
Proclima
info@proclima.com
http://de.proclima.com/

Product category: Structural work / Carpentry, cover, tightness

High performance vapour retarding and airproofing system for maximum protection from structural damage and mould. Highly permeable, roof lining and sarking membranes that actively manage moisture, 3-4 ply, suitable for temporary covers.

Both designers and workers.

Costs

Contest

Reasons for participating in the competition(s)

The challenge was to create a simple, sustainable, two-storey unit that would fit into a special site: a mature forest inside a northern Romanian city.

House CHE subtly rises around the inner courtyard in a mesmerizing natural environment with whom the building communicates through wide openings and various inner-out passages.

The house was designed and built to reach the passive house standard in the harsh climate conditions of northern Romania (Sucava) and is in the passive evaluation process. The estimated energy demanded for heating and hot water is lower than 14 kWh/sqm/year (according to preliminary PHPP calculations).

The main principles and goals of sustainability and energy efficiency are pursued by the use of wooden structures, all natural insulation materials, green roof, high performance windows and the encompassment of a resource management system for heating and electricity supply.

The natural day factor is four times bigger than the usual amount while the generous glazed surfaces also increase the solar passive energy gain. The iconic shape of the roof maximizes the solar input used for heating, offering in the meanwhile a contemporary dynamic expression.

To match the surroundings, exterior finishing is made out of natural cedar slats that preserve their physical-chemical properties even in the northern climate. The green roof recovers the vegetal surface displaced for the house construction.

The minimal need for heating is covered by a ground/water power heat pump. Photovoltaic panels will be installed on the roof at a later stage in order to provide the electric energy necessary for vital consumption and domestic hot water is obtained through solar thermal collectors and a heat buffer tank.

Building candidate in the category