Renovation

Primary energy need:

111 kWhpe/m².year

(Calculation method: Other)

ENERGY CONSUMPTION

<table>
<thead>
<tr>
<th>Building Type</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-intensive building</td>
<td>< 50 kWhpe/m².year</td>
</tr>
<tr>
<td></td>
<td>51 à 90 kWhpe/m².year</td>
</tr>
<tr>
<td></td>
<td>91 à 150 kWhpe/m².year</td>
</tr>
<tr>
<td></td>
<td>151 à 250 kWhpe/m².year</td>
</tr>
<tr>
<td></td>
<td>231 à 350 kWhpe/m².year</td>
</tr>
<tr>
<td></td>
<td>331 à 450 kWhpe/m².year</td>
</tr>
<tr>
<td></td>
<td>> 450 kWhpe/m².year</td>
</tr>
</tbody>
</table>

Building: A

Net Floor Area: 678 m² NGF (de)

Construction/refurbishment cost: 803 430 €

Number of Dwelling: 5 Dwelling

Cost/m²: 1185 €/m²

Certifications:

General information

Carrer Nou: The first multi-family building EnerPHit of Catalunya, located in the historic center of the Girona city. The work began in the summer of 2016 and has ended a year later. The building dates from 1978, the exterior walls are ceramic block finished with mortar to the outside and plastered to the interior. The interior slabs include a layer of terrazzo on unidirectional forging of concrete joists. PIR insulation panels have been installed directly on the inside of the existing wall, followed by a lining for the passage of installations also insulated with mineral wool and finished with plasterboard panels. The airtightness has been achieved by using acoustic membranes on the upper face of the slabs, the PIR taped together in walls and the existing, repaired plastering of the lower face of the slabs. The heating and cooling system consists of radiant panels supported by a battery included in the double flow mechanical ventilation system with heat recovery. Powered by an aerothermal heat pump and controlled by the mini web-server of the home automation control system.
See more details about this project

Data reliability
3rd part certified

Stakeholders

Contractor
Name: Construccions Busquets Vilobi
http://www.construccionsbusquets.com/

Construction Manager
Name: Construccions Busquets Vilobi
http://www.construccionsbusquets.com/

Stakeholders

Function: Thermal consultancy agency
PROGETIC Projectes Sostenibles SL
progetic@progetic.com
http://progetic.com/es/
Passivhaus Consulting, PHPP, building physics, design and installation domotic control system

Function: Construction Manager
Construccions Busquets Vilobi SLU
http://www.construccionsbusquets.com/

Function: Designer
Jordi Rodríguez-Roda – López-Pedrero-Roda Arquitectes SLP
lpr.arq@coac.es
http://www.lprarquitectes.com/

Function: Developer
MBD Real Estate Group
http://www.zenithouses.com/

Function: Construction company
PGI Engineering

Function: Certification company
Energiehaus Arquitectos SLP
info@energiehaus.es
http://www.energiehaus.es/
Performing the Passivhaus audit, issuance of the EnerPHit certificate.

Owner approach of sustainability
To perform an energy rehabilitation reaching a high level of comfort with a minimum energy consumption.

Architectural description

- Vertical structure of ceramic loading walls.
- Horizontal roof structure of reinforced concrete half-joists and concrete caissons.
Facades with continuous coatings.
Existing openings of important dimensions.
Facing main facade to the south, to the street of 8 meters wide, that is, with minimum solar contributions.

Action strategy:
Taking into account that the facade is protected by the Special Plan for the Protection of the Heritage of Girona's old quarter, all the insulation and sealing actions have been done inside with specific technical solutions that have forced to treat air tightness per floor.

Energy

Energy consumption

Primary energy need: 111.00 kWhpe/m².year
Primary energy need for standard building: 235.00 kWhpe/m².year
Calculation method: Other
CEEB: 0.0002
Final Energy: 32.00 kWhfe/m².year

Breakdown for energy consumption:
- Heating: 8.9 KWHFE / M².YEAR
- Refrigeration: 2.5 KWHFE / M².YEAR
- ACS: 6.4 KWHFE / M².YEAR
- Electricity: 14.8 KWHFE / M².YEAR

Initial consumption: 235.00 kWhpe/m².year

Envelope performance

Envelope U-Value: 0.19 W/m².K

More information:
- U muros = 0.19 W / m²K
- U cubierta = 0.20 W / m²K
- U forjado inferior = 0.37 W / m²K

Building Compactness Coefficient: 0.28
Indicator: n50
Air Tightness Value: 1.00

Renewables & systems

Systems

Heating system:
- Heat pump
- Others

Hot water system:
- Heat pump
- Solar Thermal

Cooling system:
- Reversible heat pump
- Others

Ventilation system:
- Double flow
- Double flow heat exchanger

Renewable systems:
- Solar Thermal
- Heat pump

Other information on HVAC:
The system consists of an air-water heat pump as production equipment, a fan with heat recovery and post-treatment water battery, and radiant ceiling plates to increase the cooling power of the system and cover the maximum thermal load in summer. The integration of the equipment and the control of the system is carried out with a domotic control unit, temperature and humidity sensors per room, and elements that act on the heat pump, the hydraulic circuits and the fan, giving information at a distance of real behavior of the system, and allowing the adjustment of the operating parameters to optimize its performance. This solution
offers heating and cooling with the same terminal, working almost silently and at low temperature, giving high thermal comfort and good performance working with heat pump.

Smart Building

BMS:
A temperature and humidity sensor has been installed in each of the 5 rooms where the radiant plates are located (dining room, kitchen and 3 bedrooms). The temperature and humidity data allow to adjust the water temperature of the plates (acting on the position of the mixing valve) so as not to have condensations, without having to close circuits, thus avoiding start-and-stop cycles of the heat pump, which results in low performance thereof and shortened compressor life.

At the same time, the fan is operated to lower or raise the flow depending on the thermal needs, with a programming (adjustable by the user) that prevents the fan from working in "party mode" during the resting hours. The control allows setting different setpoint temperatures according to schedules or according to occupation, in order to obtain the maximum comfort with the minimum energy consumption.

The ventilation system works automatically with pre-established schedules, with the possibility of manual adjustment according to the occupation level, or the dehumidification needs.

The user can control the air conditioning system and display temperature and humidity data by area, via a tablet fixed to the wall inside the home, or via a mobile phone from anywhere. The application is based on a menu system, quickly configurable and accessible.

Environment

GHG emissions

GHG in use: 22,00 KgCO₂/m²/year
Methodology used: PHPP

Indoor Air quality

The air quality is guaranteed with the double flow ventilation system with heat recovery, which contains F7 filters at the entrance.

Products

Product

ComfoAir Q 600
Zehnder
info.es@zehndergroup.com
http://www.zehnder.es/
Product category: The system of ventilation with recovery of heat of high efficiency is of Zehnder and is composed by a machine of ventilation ComfoAir Q 600 by apartment, silencers ComfoWell, a battery of water ComfoPost and a system of pipes of internal distribution and mouths of impulsion and extraction ComfoTube.
The double flow ventilation system with heat recovery provides indoor air quality and comfort to users. The acceptance of this by the team at work was good.

The Loxone control system
Loxone
info@loxone.es
https://www.loxone.com/eses/
Product category: Domotic control system that allows quick installation, systems are easily expandable for the future and control is simple for users, who access and act on the system from a computer, tablet or mobile phone via Internet.
The Loxone home automation control system allows easy handling of home installations.

Costs

Energy bill
- **Forecasted energy bill/year**: 975,00 €
- **Real energy cost/m²**: 1.44 €
- **Real energy cost/Dwelling**: 195 €

Urban environment

Historic center of the city of Girona.

Building Environnemental Quality

Building Environmental Quality

- indoor air quality and health
- acoustics
- comfort (visual, olfactive, thermal)
- energy efficiency
- renewable energies
- products and materials

Contest

Reasons for participating in the competition(s)

El edificio data de 1978, los muros exteriores son de bloque cerámico acabados con mortero al exterior y enlucido de yeso al interior. Los forjados interiores incluyen una capa de terrazzo sobre forjado unidireccional de viguetas de hormigón. Se han instalado paneles de aislamiento PIR directamente en la cara interior del muro existente, seguido de un trasdosado para el paso de instalaciones aislado también con lana mineral y acabado con paneles de cartón-yeso. La hermeticidad se ha conseguido usando membranas acústicas en la cara superior de los forjados, el PIR encintado entre sí en muros y al enyesado existente, reparado, de la cara inferior de los forjados. El sistema de calefacción y refrigeración se compone de paneles radiantes apoyados por una batería incluida en el sistema de ventilación mecánica de doble flujo con recuperación de calor. Alimentado por una bomba de calor aerotérmica y controlado por el mini web-server del sistema de control domótico.

Building candidate in the category

Energía & Climas Temperados
Bajo Carbono

Salud & Comodidad

Edificio Inteligente

Premio de los Usuarios

Gran Premio de Rehabilitación Sostenible