House in Muros. Certified Passivhaus.

by Amaya Salinas de León / 2016-06-03 11:39:59 / España / 13074 / ES

New Construction

Energy Consumption

- **Primary energy need:** 14.9 kWhpe/m².year
- **Calculation method:** Primary energy needs

Building Type: Isolated or semi-detached house

Construction Year: 2015

Delivery year: 2015

Address 1 - street: Reborio 57 M 33138 MUROS DE NALÓN, España

Climate zone: [Cfc] Marine Cool Winter & summer- Mild with no dry season.

Net Floor Area: 200 m²

Construction/refurbishment cost: 1 200 €

Number of Dwelling: 1 Dwelling

Cost/m²: 6 €

Certifications:

General information

Detached house situated in Muros del Nalón that integrates both the concepts of the Passivhaus standard energy efficiency and bioclimatic architecture. This way the building guarantees an almost zero energy consumption. The housing is formed by two different volumes, which are arranged according to different orientations, the prevailing winds and views, and are adapted to the shape of the plot and alignments marked by urban planning. The north facade is almost blind, avoiding energy losses. South façade has large windows in the living room, kitchen and master bedroom, promoting solar gains in winter. In summer the house is protected by shadings and temporary protections. As for the materials used, the architecture of the fishing villages of the Asturian western coast, are formed by volumes of different colors and wooden galleries. These two materials are reinterpreted and are used to coat the housing: the volumes where the rooms are located are coated externally with continuous Siberian Larch wood both façade and roof. These wooden pieces are based on a white pedestal in which day and access areas are located.
Owner approach of sustainability

Detached house situated in Muros del Nalon that integrates both the concepts of the Passivhaus standard energy efficiency and bioclimatic architecture. This way the building guarantees an almost zero energy consumption. The house is projected according to the criteria of the standard Passivhaus, in a way that energy consumption is adapted to the unique operation of housing. This way, the two volumes, can operate independently and have an energy consumption depending on the different degrees of occupancy of the house.

Architectural description

The housing is formed by two different volumes, which are arranged according to different orientations, the prevailing winds and views, and are adapted to the shape of the plot and alignments marked by urban planning. The north facade is almost blind, avoiding energy losses. South façade has large windows in the living room, kitchen and master bedroom, promoting solar gains in winter. In summer the house is protected by shadings and temporary protections.

Energy

Energy consumption

Primary energy need : 14.90 kWhpe/m².year
Primary energy need for standard building : 99.00 kWhpe/m².year
Calculation method : Primary energy needs
CEEB : 0.0701

Envelope performance

Envelope U-Value : 0.18 W.m⁻².K⁻¹
More information :
Larch ventilated exterior wall: 0.176 w / mk
Larch ventilated cover : 0.193 w / mk
Flat roof: 0.116 w / mk
Foundation slab: 0.181 w / mk
Indicator: EN 13829 - n50, (en 1/h-1)
Air Tightness Value: 0.46

Real final energy consumption
Real final energy consumption/m²: 99.00 kWh/m²/year

Renewables & systems

Systems

Heating system:
- Wood boiler

Hot water system:
- Heat pump

Cooling system:
- No cooling system

Ventilation system:
- Natural ventilation
- Nocturnal ventilation
- Free-cooling
- Double flow heat exchanger

Renewable systems:
- Biomass boiler
- Heat pump

Environment

GHG emissions

GHG in use: 25.90 KgCO₂/m²/year
Methodology used:
PHPP 8.4
Building lifetime: 50.00 year(s)

Indoor Air quality

The house is equipped with a mechanical ventilation system controlled double-flow ventilation (balanced passive house). The heat exchanger installed is the Siber DF4 Excellent model, certified by the Passivhaus Institute with a yield of 84% and a maximum ventilation capacity of 400 m³/h. The nominal performance of this system, taking into account losses in the ducts between the heat recovery device and the thermal envelope is 83%. Outside air ducts (input and output) are isolated and out to facade. The heat exchanger, is placed in the utility room on the ground floor, outside the thermal envelope. The supply and exhaust pipes run both ground floor and first floor by the wrought facilities coffin is insulated with rock wool 12 cm thick. of thickness. Air supply grilles are placed directly on the floor and are located in the living room and bedrooms, and extraction grilles are placed on the walls to 30cm from the ceiling in the bathrooms and kitchen.

Comfort

Health & comfort: Thanks to proper insulation, airtightness and mechanical ventilation double flow own homes certified Passivhaus great interior comfort and low CO₂ concentration is achieved inside.

Products

Product

Recuperador de calor Siber DF Excellent
Siberzone s.l.
Product category:
Heat recovery certified by the Passivhaus Institut.
Good performance.

Siber@siberzone.es
http://www.siberzone.es

Heavy System Network TimberOnLive
TimberOnLive
info@timberonlive.com
http://www.timberonlive.com
Product category:
Good performance.

Costs

Construction and exploitation costs
Cost of studies: 3 000 €
Total cost of the building: 184 117 €

Energy bill
Forecasted energy bill/year: 200,00 €
Real energy cost/m²: 1
Real energy cost/Dwelling: 200

Urban environment
The house is located on a plot of 1000.00 m², in Muros de Nalon (Asturias), at an altitude of 127.00 m and 1000 m away from the Cantabrian Sea. The climate of the coastal area of Asturias is characterized as mild-tempered, with abundant rainfall throughout the year and mild temperatures in both winter and summer. The average winter temperature is 9 °C-10 °C and 18 °C-19 °C in summer.

Land plot area
Land plot area: 1 000,00 m²

Built-up area
Built-up area: 20,00 %

Green space
Green space: 800,00
Building Environmental Quality

- indoor air quality and health
- acoustics
- comfort (visual, olfactive, thermal)
- energy efficiency
- maintenance
- building process
- products and materials

Contest

Reasons for participating in the competition(s)

Minimización del consumo de energía:
- Demanda de calefacción inferior a 15 kW/m²
Energías renovables para satisfacer la demanda de calefacción y ACS:
- Estufa de pellets
- Aerotermo
Uso de materiales y sistemas constructivos de bajo impacto ambiental.
- Uso de madera proveniente de bosques sostenibles
- Carpinterías de madera autóctonas
Uso de recursos propios
- Aprovechamiento del agua del subsuelo para riego y ducha exterior.
Plazo de construcción reducido
- La vivienda se construyó en cuatro meses y medio
Certificación Passivhaus
La vivienda está certificada por el PassivHaus Institut.

Building candidate in the category

Energía y Climas Templados

Premio de los usuarios