BEI DE KUEBEN HOUSE

by Betic Ingénieurs-Conseils, part of Sweco

New Construction

Primary energy need:

55.9 kWhep/m².an

(Calculation method: RGD du 31 août 2010 - bâtiment fonctionnel)

Economical building

- < 50: A
- 51 à 90: B
- 91 à 150: C
- 151 à 250: D
- 251 à 350: E
- 351 à 450: F
- > 450: G

Building Type: Preschool, kindergarten, nursery

Construction Year: 2016

Delivery year: 2017

Address 1 - street: 7410 ANGELSBERG, Luxembourg

Climate zone: [Cfb] Marine Mild Winter, warm summer, no dry season.

Net Floor Area: 2 300 m²

Useful area (es):

Construction/refurbishment cost: 5 500 000 €

Cost/m²: 2391.3 €/m²

General information

In 2015, the municipality of Fischbach is launching the project for the construction of the new relay house and the extension of the basic school (Cycle 1), with the ambition of creating a space that is both welcoming and most respectful of the environment. To do this, two numerous technical devices have been proposed and selected: two large-scale photovoltaic installations, straw bale façade insulation, ventilation heated or cooled by geothermal energy, natural ventilation by motorized sashes... More details about this project: https://coeba.lu/projekt/kindertagesstaette-angelsberg

See more details about this project

https://coeba.lu/projekt/kindertagesstaette-angelsberg/

Data reliability

Assessor

Stakeholders
Contractor

Name: Administration Communale de Fischbach
Contact: Romain Beckers
http://www.acfischbach.lu/fr/r%C3%A9sidents/historique-de-fischbach/maison-relais

Stakeholders

Function: Designer
coeba, dave lefèvre et associés
Marcel Emdé
https://coeba.lu/

Function: Schroeder & Associés Ingénieurs-Conseils
https://www.schroeder.lu/

Function: Other consultancy agency
Betic Ingénieurs-Conseils
Georges KIORPES
http://www.betic.lu/

Function: Environmental consultancy
Luxcontrol
https://www.luxcontrol.com/

Owner approach of sustainability

In 2015, the municipality of Fischbach is launching the project to build the new relay house and the extension of the basic school (Cycle 1), with the aim of creating a welcoming and environmentally friendly space. Faced with the increase in the population and consequently the growing need for school infrastructures, this choice has made it possible to provide a complete response to needs by integrating urban planning, functional and technical considerations with the saving of resources, ecology and the biology of materials. The Fischbach municipal administration, which has been heavily involved in the Climate Pact since 2013, is demonstrating with the construction of this new building that a new type of construction is possible. Meeting the strictest standards, the building is part of a new direction in terms of economic and ecological prospects. The complex has been designed by all stakeholders to be CO2 neutral through reduced technologies and the highest level of use of renewable, environmentally friendly and recycled building materials. The pedagogical approach is not in rest, quite the contrary. The facilities selected enable children to be made aware of the use of natural resources. The building envelope has a wooden formwork and emphasizes the ecological aspect. The structure is composed of a concrete skeleton. The technical rooms and changing rooms, located at both ends, make it possible to reinforce the stability of the building. The mass of the concrete guarantees the storage of thermal energy and its subsequent release. Its inertia reduces the building’s energy consumption, while improving its thermal comfort. The ceilings act as temperature regulators in summer and the floor heating, placed on the surface without additional screed, minimizes heat loss in winter. The façade treatment and insulation meet the criteria of a passive house. It is covered with larch panelling, one of the most resistant woods. The base of the building as well as the lower area of the north façade are covered with a clay plaster that children can play with. Flowers, handprints can indeed decorate a part of the building every new year. The self-supporting structure of the outer walls consists of 10cm thick plywood panels. These, fixed to the ceiling or mounted from the floor, remain visible inside and reinforce the soothing climate of the building. The air in the rooms is improved by the absorption of moisture or the natural regulation provided by the wood. The insulation of the solid wood exterior wall was completed with straw thermal insulation.

VISION: development of a regional circular economy and creation of a new Luxembourg building tradition with bio-based regional building materials.

Architectural description

The relay house consists of two continuous levels, in which part of the second floor has been designed as a flat roof, opening onto nature and which can be transformed for an afternoon into an "extra classroom outside". The building, 65m long and 17.5m wide, has a floor area of approximately 2,300m². The corbelled seat on the second level protects the entrance to the building and children from the elements.

Energy

Energy consumption

-
Primary energy need : 55.90 kWhep/m².an
Primary energy need for standard building : 153.20 kWhep/m².an
Calculation method : RGD du 31 août 2010 - bâtiment fonctionnel

Breakdown for energy consumption :

-

More information :
-

Envelope performance

Envelope U-Value : 0.11 W.m².K⁻¹

More information :
-

Users' control system opinion :

Renewables & systems

Systems

Heating system :
- Urban network
- Low temperature floor heating
- Wood boiler

Hot water system :
- Urban network
- Wood boiler

Cooling system :
- Others

Ventilation system :
- Natural ventilation
- Nocturnal ventilation

Renewable systems :
- Solar photovoltaic

Other information on HVAC :
Energetically, the project is based on the current directives of the Public Buildings with an alternative approach of regulation, ventilation, domestic technology and heat generation.

Heat production in the existing building is provided by wood chip heating. The new construction and an additional municipal building were connected to the district heating network.

In order to save energy and because they are used only during working hours, the classrooms are cooled by ventilation via motorised vents. They are activated during breaks, in the evening or when limit values are exceeded.

This system makes maximum use of ventilation by cooling the building structure at night, which stores the cold to ensure thermal comfort during the day. A central ventilation system has been installed for the motor room, kitchen and catering area.

The motor room, due to its capacity of more than 150 people, is mechanically ventilated. This technique is essential to reduce heat losses due to fresh air supply.

The ventilation of this room and the "meal" zone are coupled because they are not necessarily occupied parallel or at least, the occupation is distributed between the 2 spaces.

The pulsed flow in the motor room can pass through and be reused in the dining rooms. In order to guarantee comfort during hot summer weather, the convection air in this area is treated and cooled.

For this purpose, a specific unit has been installed with energy recovery and adiabatic air cooling. This addition of cold makes the production of refrigeration energy by a chiller superfluous.

A 30 kWp photovoltaic installation installed on the roof completes this device.

-

Solutions enhancing nature free gains :
-

Smart Building

BMS :
Smart Building functions of the building : Classrooms, offices, staff rooms, library, refectory, evolution room and multi-purpose room are equipped with 360° presence detectors, installed on the ceiling.

The lighting is switched on automatically via the sensors and the lighting level is adjusted in real time according to the outside brightness. The switch-off is
automatic if no movement is detected for a certain period of time.

This adaptation of the luminous flux is done in 2 zones: on the façade and on the corridor side. Sensors are also installed in the corridors as well as in the toilets.

The choice of luminaires was made on the basis of energy efficiency studies in order to comply with low energy consumption standards and lighting standards according to ITM regulations.

A centralized management of blinds, by room and by façade, has been installed. It is controlled automatically by sensors located on the roof (light sensors, wind sensors, temperature sensors...).

A local control is provided for each room and for each façade.

To guarantee an optimal brightness level, the system does not allow manual lowering of the blinds if the climatic conditions are not accepted by the device. Blinds are therefore an integral part of the energy concept.

The building is equipped with on-line access control via a badge reader at the main entrance. The doors to the premises, excluding the kitchen and sanitary facilities, are equipped with off-line access control.

A video intercom was set up at the main entrance of the building. This device is in connection with other interior video-phones, installed in offices as well as in all classrooms.

Video intercom systems also allow remote control of external doors.

Smartgrid

Users’ opinion on the Smart Building functions:

Environment

GHG emissions

- **GHG in use**: 14,00 KgCO₂/m²/an
- **Methodology used**: -

Life Cycle Analysis

- **Eco-design material**: The insulation of the solid wood exterior wall was completed with straw thermal insulation. This sustainable building material, used for centuries, is the centre of CO₂-neutral construction and an ecological and economical alternative to traditional fossil insulation materials. The constructive principle is based on wooden boxes, inside of which the straw isswilling. The energy required for its production is 77 times less than mineral wool and pollutes the environment by about 60 tonnes less CO₂ emissions than conventional construction. The straw bales are naturally incorporated into the façade, retain CO₂ more permanently and are 100% biodegradable. Compared to other insulators, straw is fire resistant. Compressed, it has very little oxygen inside, which allows it to carbonize only very slowly, protecting the supporting structure for more than an hour. Wood also has a high fire resistance. A carbonized layer is created on the surface and slows its progression. The core of the structure thus retains all its strength.

The straw

- **Current situation**:
 - Renewable resource.
 - Easily accessible.
 - 5,000 constructions carried out in France and 500 new constructions per year.

In construction:

- Almost zero grey energy.
- Certification and acceptance by approved experts.

In the circular economy:

- Inert, recyclable and compostable waste.
- Easy disassembly at the end of the life cycle.
- Reuse after dismantling the building.

Comfort

- **Health & comfort**:
- **Acoustic comfort**:

Products

Product

- **Thermal insulation in straw bales**
- **Baustroh GmbH**
The insulation of the solid wood exterior wall was completed with straw thermal insulation. This sustainable building material, used for centuries, is the centre of CO2-neutral construction and an ecological and economical alternative to traditional fossil insulation materials. The constructive principle is based on wooden boxes, inside of which the straw is willing. The energy required for its production is 77 times less than mineral wool and pollutes the environment by about 60 tonnes less CO2 emissions than conventional construction.

The straw bales are naturally incorporated into the façade, retain CO2 more permanently and are 100% biodegradable. Compared to other insulators, straw is fire resistant. Compressed, it has very little oxygen inside, which allows it to carbonize only very slowly, protecting the supporting structure for more than an hour. Wood also has a high fire resistance. A carbonized layer is created on the surface and slows its progression. The core of the structure thus retains all its strength.

The straw
- Renewable resource.
- Easily accessible.
- 5,000 constructions carried out in France and 500 new constructions per year.

In construction:
- Almost zero grey energy.
- Certification and acceptance by approved experts.

In the circular economy:
- Inert, recyclable and compostable waste.
- Easy disassembly at the end of the life cycle.
- Reuse after dismantling the building.

Costs

Construction and exploitation costs

Total cost of the building: 5 500 000 €

Urban environment

As part of the new the organization of the existing school has been redesigned to create maximum synergy between the two buildings.

The layout of the premises and The shape of the new construction thus offers a high quality outdoor space.

To create a set the new buildign's orientation and facade have been particularly well cared for.

The line slightly bent of the facade and the location of the relay house at the south-western end of the plot create continuity with the existing building but also protect children from noise pollution from adjacent streets.

The playground has been completely reconsidered in the overall concept to offer children additional spaces, segmented according to ages and conducive to interactions. The natural environment being one of the most favourable, the meadow located on the south-western border of the property has been preserved and decorated with shrubs and fruit trees.

Parking spaces

To the north of the site, parking has been redesigned with the creation of a new "KISS & GO" parking lot and a new parking area for parents.

Building Environmental Quality

- Building flexibility
- Indoor air quality and health
- Acoustics
Les installations retenues permettent aux enfants d'apprendre à utiliser des ressources naturelles.

La masse du béton, composant la structure du bâtiment, garantit le stockage de l'énergie thermique pour la restituer ultérieurement et permet également de réduire la consommation d'énergie de celui-ci, tout en améliorant le confort thermique. La production de chaleur dans l'école fondamentale est assurée par un chauffage à copeaux de bois, alors que la nouvelle construction a été reliée au réseau de chauffage urbain. Les platfonds font office de régulateurs de température en été et le chauffage au sol minimise les pertes de chaleur en hiver.

Un système central de ventilation a été mis en place pour la salle de motricité, la cuisine et l'espace de restauration. Les salles de classe sont refroidies par ventilation nocturne via des ouvrants motorisés qui s'activent quand les valeurs limites sont atteintes. Le débit pulsé dans la salle de motricité transite entre les différentes salles. C'est pourquoi un groupe spécifique de récupération d'énergie et de refroidissement adiabatique de l'air a été installé.

Une installation photovoltaïque de 30 kWc a été installée en toiture. Le concept d'éclairage full LED minimise pour sa part la consommation d'électricité.

Le principe de l'isolation thermique en paille de cette construction hybride béton-bois repose sur des caissons en bois, à l'intérieur desquels la paille est disposée. Par rapport à l'ensemble des isolants, la paille résiste très bien au feu, car elle est compactée et de ce fait ne laisse pas passer d'air. C'est une alternative écologique et économique aux matériaux d'origine fossile.

La maison relais, d'une longueur de 65m et d'une largeur de 17,5m, développe une surface d'environ 2.300 m². La construction autoportante des parois extérieures est constituée de panneaux de contreplaqué d'une épaisseur de 10cm, en Mélèze, un bois des plus résistants.

Le bâtiment est composé de deux niveaux continus, dans lesquels une partie du deuxième étage a été imaginée en toit terrasse, qui offre une cour de récréation pour les enfants. Le socle du bâtiment ainsi que la zone inférieure de la façade nord sont recouverts d'un enduit argileux que les enfants peuvent appréhender de manière ludique.

L'organisation de l'école existante a été pensée afin de créer une synergie entre les deux bâtiments et permet aussi de protéger les enfants des nuisances sonores.

Building candidate in the category

Energie & Climats Tempérés