

Long-Term Performance of Super-Insulating Materials in Building Components & Systems

NANJING TECH UNIVERSITY 23 September 2015

CSTB Energy & Environment - Envelope & Innovative Materials <u>daniel.quenard@cstb.fr</u> - 33 4 76 76 25 46

Long-Term Performance of Super-Insulating Materials (SIM) in Building Components & Systems

- Context & Challenge
- Heat transfer
- Thermal Conductivity
- Main issues about ageing for SIM
- > Applications
- Conclusion

Communities Programme

What drives energy consumption in households?

19 OECD member countries

Heating ~ **70** %

Breakdown of OECD energy consumption in the residential sector (2011)

The Building Context Three main energy users

et de la Maîtrise de l'Energie

waste

Figure 4.13
Household Energy Se per Capita

Source : IEA - Millennium

FRENCH BUILDINGs - EXISTING STOCK

CSTB e futur en construction

ADEME

Cold Storage : freezer & refrigerator

Figure 4.8 Finergy Consumption of Large Appliances, EU15

le futur en construction

IEA - Millennium

Energy Performance of Buildings Directive (EPBD),

The principle of nearly zero energy buildings

"nearly zero-energy building" means a building that has a very high energy performance. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby

The principle of cost optimality

giving guidance for the energy performance requirements of new and existing buildings undergoing major renovation

Buildings in the European Union

210 million buildings in the European Union Approximately 53 billion square meters of usable indoor space

Туре	Number constructed before 1973	Number constructed after 1973	Overall percentage of total stock	
Individual Private Residences	42,840,000	28,560,000	34	
Private Apartment Buildings	17,640,000	11,760,000	14	60%
Public (Social) Housing	16,800,000	8,400,000	12	
Commercial Buildings	18,900,000	44,100,000	30	
Public Buildings	5,040,000	11,760,000	8	40 %
Other (Leisure, Industrial)	1,890,000	2,310,000	2	
Totals:	103,110,000	106,890,000	100	

new buildings : 10 % to 20 % of the additional energy consumption by 2050 building stock: more than 80%

Source : E2APT-RICS-ACE

ADEME

Potential energy savings in Building ... as much as transport today

Energy in Buildings and Communities Programme

Source WBCSD

EUROPE : Challenges in the Building Sector

Renovation/Retrofitting

- > Building stock : more than 80% of energy consumption.
- > 75% to 90% of current buildings will still be standing in 2050

New Buildings

- > NZEB (Net or Nearly Zero Energy Building)
- > only 10 % to 20 % of additional energy consumption (2050)

Energy Efficiency

Through Building Envelope & Thermal Insulation (IEA Roadmap)

Source : <u>http://www.energy-efficiency-watch.org/fileadmin/eew_documents/images/Event_pictures/EEW2_Logos/EEW-Final_ferget.</u>

Energy in Buildings and

Communities Programme

Annex 65

Building Insulation & Water Heating Saving are among the most cost-effective carbon abatement measures

Global cost curve for greenhouse gas abatement measures beyond "business as usual".

Energy in Buildings and Communities Programme

ADEME

Annex 65

Energy in Buildings and

Communities Programme

Optimum U-value

Source : EURIMA-ECOFYS

Thermal Conductivity of Building Materials

Energy in Buildings and Communities Programme

Annex 65

Equivalent Thermal Conductivity λ_e

et de la Maîtrise de l'Energi

Energy in Buildings and Communities Programme Annex 65

et de la Maîtrise de l'Er

Source : Microtherm

The main trends to lower thermal conductivity

Reduction of radiative transfer (15% - 50 %)

- « low-emissivity barriers » : films, powders ...

Reduction of gas conduction (60 % - 80 %)

- 1 : « heavy gas » , lower λ_{g0}
- 2: low pressure P
- 3 : confinement cavity size δ lower than ${\sf I}_{\sf m}$

Change of Gas

Gas	Molecular Weight <i>kg/mole</i>	Thermal Conductivity λ <i>W/m .K -</i> 24 °C	,
Air	29	0.026	_
Water Vapor	18	0.0187	
CO2	44	0.0168	
CFC11	137		banned
HCFC 141b		0.010	
HFC		0.011	
n-Pentane C_5H_{12}	72	0.0135	
c-Pentane		0.015	
Ar	40	0.0179	Use in
Kr	84	0.0123	double-glazing
Xe	131	0.0055	

Reduction of Radiative Transfer by opacifiers use

ADEME

Agence de l'Environnement et de la Maîtrise de l'Energie

le futur en construction

Energy in Buildings and Communities Programme Annex 65

Source BASF

Confinement & Low Pressure

Energy in Buildings and Communities Programme

Annex 65

VIP: Vacuum Insulation Panel

Traditional Insulating Materials vs Nano-Porous Materials at Low Pressure

CSTB Agence de l'E

Thermal Bridge

Source : FIW – C. Sprengard

Basic Phenomena of VIP ageing

Pressure increasing due to gas transfer through the film

Solid conductivity increasing due to water adsorption

Solid conductivity increasing due to densification

Source EMPA

Source : Vacuum insulation panels for building application basic properties, aging mechanisms and service life H. Simmler, S. Brunner - Energy and Buildings 37 (2005) 1122–1131

et de la Maîtrise de l'E

Film performance Air permeability / Water vapour diffusion

Important points :

- Barrier performance of VIP-envelope before and after VIP production not comparable (folding, welding, sealing ...)
- Values not comparable unless all the measurement conditions are the same (Temperature, Humidity, measurement duration, ...)
- Limitation of measurement capacity when using commercially available devices for permeation

Porous Core Materials

Energy in Buildings and Communities Programme Annex 65 Identification of basic degradation phenomena

Nano means huge !

High Specific Area - several 100 of m²/g Small Pore Size - < 0.1 μm

High Gas adsorption - (H₂O) High capillary pressure (P~1/r)

Water absorption

Source : CSTB

Porous Core Materials basic degradation phenomena

- Surface smoothing
- Reduction of S_{BET}
- Inter particles neck growth

Figure 14: Comparison between hydrophilic and hydrophobic aerogels (Chemistry, 2012)

Lang Huang - KTH : Feasability study of Using Silica Aerogel as insulation fro buildings B; Morel : Pyrogenic silica ageing under humid atmosphere - Powder Technology 190 (2009) 225–229

Ageing analysis of SIM Identification of degradation processes

> VIP ageing :

- o four components should be considered with regard to life time:
 - barrier envelope (air permeability, water vapour diffusion)
 - core material (porous silica, MW)
 - sample thickness
 - service conditions (T, HR, loads)

> APM :

- \circ four components should be considered with regard to life time:
 - core material (pore size & specific surface)
 - hydrophobic treatment
 - sample thickness
 - service conditions (T, HR)

Cabot LUMIRA aerogel in polycarbonate

Energy in Buildings and Communities Programme Annex 65

Thermal Insulation / Light Diffusion / Reduction of noise impact

ADEME ADEME Agence de l'Environnement et de la Maîtrise de l'Energi

...

Annex 65

Energy in Buildings and

Communities Programme

SUBTASK III : Design & Installation Leader : Chalmers

Listing of critical points :

Handling & Transportation Installation / fixing

Figure 2.9. Evacuated VIP compared to the one where a laminate has been damaged. It is clear that the laminate is loose from the core in the second case (Photo: Axel Berge).

ADEME

Source : Chalmers - va Q tec

Annex 65

Thun, Switzerland 30 km south of Swiss capital Bern

SUBTASK III Case studies

ADEME

Annex 65

SUBTASK III Case studies

Maison de l'Alsace - Paris

http://www.maison-alsace.com/suivez-les-travaux-en-direct/novembre-2014

Annex 65

Maison de l'Alsace - Paris

Source ISOLPRODUCTS - M. Koenig

Annex 65

SUBTASK III Case studies

Landshövdingehus from 1930 - SWEDEN

Agence de l'Environnement et de la Maîtrise de l'Energie

Annex 65

SUBTASK III Case studies

et de la Maîtrise de l'Energie

Renovation in Switzerland with ASPEN aerogel mat

- evening of the subsurface with mortar
- 2. adhesive mortar layer

each insulation
 layer has to be
 applied in a still
 moist adhesive
 mortar layer

- 4. application of the plaster base-mesh
- mechanical fixing with plastic anchors

ADEME

Payback period of VIP and EPS different scenarios of insulation for buildings.

Insulation scenarios and main parameters used in payback period calculation.

Source : Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions M. Alam 1, H. Singh, M.C. Limbachiya - Applied Energy 88 (2011) 3592–3602

Annex65 : a bridge between science & market

Energy in Buildings and Communities Programme

Annex 65

http://aasarchitecture.com/2013/03/phyllis-j-tilley-memorial-bridge-by-rosales-partners-architects.html

SIM : Super Insulating Materials ?

Advanced Porous Materials APM	Gas Filled Panel GFP	Vacuum Insulation Panel VIP
	$\lambda_{g} = \cdot \frac{\lambda_{g0}}{1 + C \cdot T}$	
		CSTB le futur en construction

Objective of the Annex 65

The aim of Annex 65 is to develop the necessary knowledge, tools and networks to improve the confidence of end-users regarding super-insulating materials and to foster a wider public acceptance in the future.

By providing

- Reliable data (properties & durability)
- Secure implementation techniques
- Sustainability Analysis

Two main types of SIM :

- Vacuum Insulation Panel
- Advanced-Porous Materials, such as Aerogel

State of the Art

Learning from the past (ST1)

Three scientific & technical issues: Performance & Durability - (ST2)

Design & Installation (ST3)

Sustainability (LCA, LCC, EE) – (ST4)

ADEME

et de la Maîtrise de l'En

Communities Programme

Annex65 & SIM value chain

ST1 : learning from the past

Four SubTasks

SUBTASK 1: State of the Art - Materials & Components - Case Studies SubTask Leader: ZAE Bayern – Ulrich Heinemann

SUBTASK 2: Characterization of materials & components - Lab Scale SubTask Leader: FIW Munich – Andreas Holm / Christoph Sprengard

SUBTASK 3: Practical Applications – Retrofitting Subtask Leader: Chalmers Univ. Bijan Adl Zarrabi

SUBBASK 4: Sustainability (LCC, LCA, EE) Subtask Leader : Chalmers Univ. Holger Wallbaum

Deliverables/Target Audience

Ref.	Deliverables	Related subtask	Target Audience
D1	State of the Art and Case Studies	ST1	Supply Chain
D2	Scientific Information for Standardization Bodies (Hygro-Thermo-Mechanical Properties & Ageing)	ST2	CEN, ISO, EOTA, UEATc, Testing laboratories Materials Manufacturers
D3	Guidelines for Design, Installation & Inspection Special focus on Retrofitting	ST3	Designers, Engineers, Contractors, Builders
D4	Report on Sustainability Aspect (LCC, LCA, EE)	ST4	Supply Chain

Participants ~50 - Countries : 17

rgy in Buildings and Annex 65

Belgium: Recticel, Dow Corning,

China: Nanjing University of Aeronautics and Astronautics (NUAA), Siltherm, Creek

France: EDF, Mines-Paristech, INSA Lyon, Univ. Lorraine, Saint-Gobain , Toray, Arcelor Mittal, REXOR, Enersens, CSTB,

Germany: ZAE Bayern, Fraunhofer IVV, va-Q-tec, FIW Munich, Evonik, DLR, Metra-Group,

Porextherm, Cabot, Aspen-Aerogel

Italy: Politecnico di Milano, Politecnico di Torino, Univ. Perugia, Stress Scarl

Norway: SINTEF

Spain: Tecnalia,

United Kingdom: Kingspan,

South Korea : Kongju National University, OCI

Sweden : Chalmers University, KTH

Israel : Hanita Coatings (observer)

Japan : Annex65 Japanese Support Committee (10 members)

Turkey : Arcelik

Greece : National Technical University of Athens (NTUA)

Switzerland : EMPA

Canada : Ryerson University/Toronto, Univ. of Victoria **Denmark :** Rockwool

KEY ISSUES

TECHNICAL SOLUTIONS

PRODUCT PERFORMANCE DURABILITY & LIFE CYCLE

INDUSTRIALISATION vs STOCK REFURBISHMENT

INTEGRABILITY
 CRAFTMEN UPGRADE

INDUSTRIALIST INVESTMENT Vs WOOL & FOAMS

PUBLIC POLICIES REQUIREMENTS

SAFETY - FIRE

HEALTH – COV, NANO PARTICLES

ENERGIE – ENERGY SAVING RATIO

ENVIRONMENT - SUSTAINABILITY

ECONOMY - LAND COST, PRICE

SOCIAL -

IT INFORMATION – RFID

TECHNICAL SOLUTIONS ARE ABOUT TO EXIST PARTIAL PUBLIC POLICIES SATISFACTION STILL R&D NEEDS TO OVERCOME KEY ISSUES MATURE MARKET FOR CONVENTIONNAL INSULATING MATERIALS ENERGY REGULATIONS PRESSURE IN EU – US – ASIA PRODUCTION CAPACITY OVERSIZE & MONOPOLE

TOWARDS A CHEMISTERY PLAYER BREAKTHROUGH?

